Praise for Bayesian Thinking in Biostatistics:
"This thoroughly modern Bayesian book …is a 'must have' as a textbook or a reference volume. Rosner, Laud and Johnson make the case for Bayesian approaches by melding clear exposition on methodology with serious attention to a broad array of illuminating applications. These are activated by excellent coverage of computing methods and provision of code. Their content on model assessment, robustness, data-analytic approaches and predictive assessments…are essential to valid practice. The numerous exercises and professional advice make the book ideal as a text for an intermediate-level course…"
-Thomas Louis, Johns Hopkins University
"The book introduces all the important topics that one would usually cover in a beginning graduate level class on Bayesian biostatistics. The careful introduction of the Bayesian viewpoint and the mechanics of implementing Bayesian inference in the early chapters makes it a complete self- contained introduction to Bayesian inference for biomedical problems….Another great feature for using this book as a textbook is the inclusion of extensive problem sets, going well beyond construed and simple problems. Many exercises consider real data and studies, providing very useful examples in addition to serving as problems."
- Peter Mueller, University of Texas
With a focus on incorporating sensible prior distributions and discussions on many recent developments in Bayesian methodologies, Bayesian Thinking in Biostatistics considers statistical issues in biomedical research. The book emphasizes greater collaboration between biostatisticians and biomedical researchers. The text includes an overview of Bayesian statistics, a discussion of many of the methods biostatisticians frequently use, such as rates and proportions, regression models, clinical trial design, and methods for evaluating diagnostic tests.
Key Features
Applies a Bayesian perspective to applications in biomedical science
Highlights advances in clinical trial design
Goes beyond standard statistical models in the book by introducing Bayesian nonparametric methods and illustrating their uses in data analysis
Emphasizes estimation of biomedically relevant quantities and assessment of the uncertainty in this estimation
Provides programs in the BUGS language, with variants for JAGS and Stan, that one can use or adapt for one's own research