Nature-Inspired Sensors presents and discusses the basic principles and latest developments in nature-inspired sensing and biosensing materials as well as the design and mechanisms for analyzing their potential in multifunctional sensing applications. The book starts with a comprehensive review of certain fundamental mechanisms in different living creatures, including humans, animals, and plants. It presents and discusses ways for imitating various nature-inspired structural features and their functional properties, such as hierarchical, interlocked, porous, and bristle-like structures and hetero-layered brick-and-mortar structures. It also highlights the utility of these structures and their properties for sensing functions, which include static coloration, self-cleaning, adhesive, underwater navigation and object detection, electric charge generation, and sensitive olfactory functions for detecting various substances. This is followed by an appraisal of accumulating knowledge and its translation from the laboratory to the point-of-care phase, using selective sensors as well as desktop and wearable artificial sensing devices, for example, electronic noses and electronic skins, in conjunction with AI-assisted data processing and decision-making in the targeted field of application. In addition, the book offers an insight into the challenges of continuing the development of nature-inspired smart sensing and biosensing technology and their wider availability, which can be substantially improved. It is a valuable reference for graduates, undergraduates, researchers, and working professionals in the fields of chemistry, materials science, and biomedical and environmental science.
- Discusses the current strategies for fabricating nature-derived bio/chemical sensors
- Presents ways to apply nature-derived bio/chemical sensors in real life
- Describes the future of nature-derived bio/chemical sensors