Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology.
Each chapter introduces relevant theories alongside detailed, real-life case studies that demonstrate the value of thermofluid modeling and simulation as an integral part of the engineering process.
Research problems and modeling solutions across a range of energy efficiency scenarios are presented by experts, helping users build a sustainable engineering knowledge base.
The text offers novel examples of the use of computation fluid dynamics in relation to hot topics, including passive air cooling and thermal storage. It is a valuable resource for academics, engineers, and students undertaking research in thermal engineering.
- Includes contributions from experts in energy efficiency modeling across a range of engineering fields
- Places thermofluid modeling and simulation at the center of engineering design and development, with theory supported by detailed, real-life case studies
- Features hot topics in energy and sustainability engineering, including thermal storage and passive air cooling
- Provides a valuable resource for academics, engineers, and students undertaking research in thermal engineering